Difference between revisions of "Definition:군의 작용"

From Beloveds
Line 5: Line 5:
 
집합 $X$에 대해서 $G$가 작용하는 함수 $\sigma:(g,\ x)\mapsto g\cdot_{\sigma}x$가 $e\cdot_{\sigma}x=x$이고 $g_1\cdot_{\sigma}(g_2\cdot_{\sigma}x)=(g_1g_2)\cdot_{\sigma}x$이면, 즉 각 $g$가 $X$의 각 원소를 permute하면 $\sigma:G\times X\to X$를 '''group action''' of $G$ on $X$라 하고 $X$를 '''$G$-set'''이라 한다. $g\cdot_{\sigma} x=x$는 '''trivial action'''이고 $G$의 regular representation은 $X=G$에서 $g\cdot_{\sigma}x=gx$인 경우이다. $G$의 automorphism들은 $X=G$에서 conjugation $g\cdot_{\sigma} x=gxg^{-1}$인 경우에 해당할 수 있다. 여기에 속하는 것을 $G$의 '''inner automorphism'''이라 하고 이들이 이루는 군을 $\operatorname{Inn}(G)$로 쓰며, quotient group $\Aut(G)/\operatorname{Inn}(G)$를 '''outer automorphism'''이라 하고 $\operatorname{Out}(G)$로 쓴다. group action은 group homomorphism $G\to S_X$를 정의하지만 관찰을 위해서 group homomorphism $G\to\Aut(X)$를 정의한다고 가정하고는 한다.<ref>https://math.stackexchange.com/questions/4514354/equivalent-definitions-of-a-group-acting-on-a-group</ref>
 
집합 $X$에 대해서 $G$가 작용하는 함수 $\sigma:(g,\ x)\mapsto g\cdot_{\sigma}x$가 $e\cdot_{\sigma}x=x$이고 $g_1\cdot_{\sigma}(g_2\cdot_{\sigma}x)=(g_1g_2)\cdot_{\sigma}x$이면, 즉 각 $g$가 $X$의 각 원소를 permute하면 $\sigma:G\times X\to X$를 '''group action''' of $G$ on $X$라 하고 $X$를 '''$G$-set'''이라 한다. $g\cdot_{\sigma} x=x$는 '''trivial action'''이고 $G$의 regular representation은 $X=G$에서 $g\cdot_{\sigma}x=gx$인 경우이다. $G$의 automorphism들은 $X=G$에서 conjugation $g\cdot_{\sigma} x=gxg^{-1}$인 경우에 해당할 수 있다. 여기에 속하는 것을 $G$의 '''inner automorphism'''이라 하고 이들이 이루는 군을 $\operatorname{Inn}(G)$로 쓰며, quotient group $\Aut(G)/\operatorname{Inn}(G)$를 '''outer automorphism'''이라 하고 $\operatorname{Out}(G)$로 쓴다. group action은 group homomorphism $G\to S_X$를 정의하지만 관찰을 위해서 group homomorphism $G\to\Aut(X)$를 정의한다고 가정하고는 한다.<ref>https://math.stackexchange.com/questions/4514354/equivalent-definitions-of-a-group-acting-on-a-group</ref>
  
== counting ==
+
finite group의 group action은 counting에 쓰인다.<ref>https://math.stackexchange.com/questions/3361649/counting-number-of-groupings-using-group-actions</ref> general linear group은 transformation을 representation한다.<ref>https://en.wikipedia.org/wiki/List_of_representation_theory_topics</ref>
finite group의 group action은 counting에 쓰인다.<ref>https://math.stackexchange.com/questions/3361649/counting-number-of-groupings-using-group-actions</ref>
 
 
 
== group representation ==
 
general linear group은 transformation을 representation한다.<ref>https://en.wikipedia.org/wiki/List_of_representation_theory_topics</ref>
 
  
 
== 참고 자료 ==
 
== 참고 자료 ==

Revision as of 22:09, 4 February 2023

group의 cancellation property에 의해서, $g\in G$를 고정하였을 때 $G=\{gx\mid x\in G\}$는 각 원소를 permute하므로 함수 $x\mapsto gx$는 symmetric group의 한 원소이다. 그러한 permutation $g:G\to G$을 모든 $g$들에 대해서 생각할 수 있고 $G\to(G\to G)$의 kernel에 $e$밖에 없으므로 이는 monomorphism이다. 따라서 모든 group은 symmetric group의 어떤 subgroup과 isomorphic이다. 이를 Cayley's Theorem(케일리의 정리)이라 하고, 함수 $G\to(G\to G)$를 $G$의 regular representation(정칙 표현)이라고 한다. 이는 group을 singleton set에 대한 small category로 볼 때 Yoneda lemma의 특수한 경우이다.[1]

$G\to G$인 모든 isomorphism들은 이항 연산이 함수의 합성인 group을 이룬다. 항등원은 identity map이고 역원은 inverse morphism이며, 각 isomorphism이 $G$의 각 원소를 permute하므로 symmetric group의 어떤 subgroup과 isomorphic이다. 이를 $G$의 automorphism group(자기 동형군)이라 하고 $\Aut(G)$로 쓴다. 예를 들어 $(\Z/4\Z,\ +)$의 automorphism group을 구해 보겠다. regular representation에 대입하면 $\id_{\Z/4\Z},\ (1\ 2\ 3\ 0),\ (0\ 2)(1\ 3),\ (0\ 3\ 2\ 1)$에서 $(g_1+g_2)+a = (g_1+a)+(g_2+a)$를 만족하는 것은 $\id_{\Z/4\Z}$밖에 없다. group 연산을 보존하려면 $f(0)=0,\ f(n)=f(1)n$이어야 하므로 automorphism group의 모든 원소는 $x\mapsto a\times x$들 가운데에서 얻을 수 있다. 여기에서 $(3\ 1)$을 하나 더 얻으며, $\Z/n\Z$에 대해서 일반화하면 $\Aut(\Z/n\Z)=(\Z/n\Z)^{\times}$이다.

집합 $X$에 대해서 $G$가 작용하는 함수 $\sigma:(g,\ x)\mapsto g\cdot_{\sigma}x$가 $e\cdot_{\sigma}x=x$이고 $g_1\cdot_{\sigma}(g_2\cdot_{\sigma}x)=(g_1g_2)\cdot_{\sigma}x$이면, 즉 각 $g$가 $X$의 각 원소를 permute하면 $\sigma:G\times X\to X$를 group action of $G$ on $X$라 하고 $X$를 $G$-set이라 한다. $g\cdot_{\sigma} x=x$는 trivial action이고 $G$의 regular representation은 $X=G$에서 $g\cdot_{\sigma}x=gx$인 경우이다. $G$의 automorphism들은 $X=G$에서 conjugation $g\cdot_{\sigma} x=gxg^{-1}$인 경우에 해당할 수 있다. 여기에 속하는 것을 $G$의 inner automorphism이라 하고 이들이 이루는 군을 $\operatorname{Inn}(G)$로 쓰며, quotient group $\Aut(G)/\operatorname{Inn}(G)$를 outer automorphism이라 하고 $\operatorname{Out}(G)$로 쓴다. group action은 group homomorphism $G\to S_X$를 정의하지만 관찰을 위해서 group homomorphism $G\to\Aut(X)$를 정의한다고 가정하고는 한다.[2]

finite group의 group action은 counting에 쓰인다.[3] general linear group은 transformation을 representation한다.[4]

참고 자료

  • 이인석. 선형대수와 군.